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Understanding the action of atypical antipsychotics is useful in exploring the pathophysiology of schizo-
phrenia and in synthesizing drugs that improve various domains of psychopathology without unwanted
side effects. In animal models, atypical antipsychotic drugs appear to have a preferential action in the lim-
bic dopaminergic system. Regionally specific action has been studied by measuring the amount of Fos pro-
tein produced in a particular brain region as a consequence of a drug’s effects on the c-fos gene. Evidence
suggests that the atypical and typical antipsychotic drug-induced increases in Fos levels in the nucleus ac-
cumbens are related to improvements in positive symptoms, whereas Fos increases in the prefrontal cor-
tex, with the atypical antipsychotics only, correlate with negative symptom improvement. The extrapyra-
midal effects seen with typical antipsychotics are thought to be related to Fos increases in the striatonigral
pathway. However, studies of Fos levels in specific brain regions reveal only the site of action, not the
mode of action. The finding that atypicality is related to surmountable D2 dopamine receptor blocking
provides another venue to define and explore atypical antipsychotic drug action.

Il est utile de comprendre l’action des neuroleptiques atypiques dans l’étude de la pathophysiologie de la
schizophrénie et la synthèse de médicaments qui améliorent divers domaines de la psychopathologie sans
produire d’effets secondaires indésirables. Dans des modèles animaux, les neuroleptiques atypiques sem-
blent avoir un effet préférentiel dans le système dopaminergique limbique. On a étudié des actions spéci-
fiques régionales en mesurant la quantité de protéine Fos produite dans une région particulière du cerveau
à la suite des effets d’un médicament sur le gène c-fos. Tout semble indiquer que les augmentations des
taux de Fos produites par les neuroleptiques atypiques et typiques dans le noyau accumbens sont reliées à
des améliorations de symptômes positifs, tandis que les augmentations des taux de Fos dans le cortex
préfrontal provoquées par des neuroleptiques atypiques seulement présentent un lien avec l’amélioration
de symptômes négatifs. On pense que les effets extrapyramidaux causés par les neuroleptiques typiques
sont reliés aux augmentations des taux de Fos dans la voie striatonigrale. Des études des taux de Fos dans
certaines régions précises du cerveau ne révèlent toutefois que le type de l’action et non son mode. La
constatation indiquant que le caractère atypique est relié à un blocage surmontable des récepteurs de la
dopamine D2 offre un autre moyen de définir et d’explorer l’action des neuroleptiques atypiques.
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Introduction

A growing number of atypical antipsychotic drugs
have emerged over the last few years. Although these
new drugs are lumped together as “atypical,” their
widely varying chemical structure and pharmacologi-
cal actions indicate their heterogeneity. Understanding
the mode of action of the atypical antipsychotic drugs
is useful in exploring the pathophysiology of schizo-
phrenia and establishing realistic goals for treating
schizophrenia.

Animal models of antipsychotic action

Generally, pharmacologic tests employed in animals
for predicting the antipsychotic effects of drugs in hu-
mans are based on 2 principles.
• The ability of the drug to block the action of dopa-

mine (DA) in animals: 2 standard tests are used to
assess this. When a D2 receptor antagonist is injected
into a rat, it will remain immobile for an extended
period of time when placed in an unnatural posi-
tion. This immobility, called catalepsy, is caused by
the blockade of DA receptors within the neostriatum
and is considered to be a predictor of extrapyrami-
dal symptom (EPS) inducing potential in humans.
The second test, the blockade of a conditioned
avoidance reaction, is extensively employed as a
predictor of antipsychotic action. After an animal
has learned to respond to a sensory cue and move
away from a floor to avoid electric shock, antipsy-
chotic agents will block its ability to respond to the
sensory cue presented before the shock.1

• The ability to counteract the effects of dopaminergic
drugs: the administration of d-amphetamine, a
dopaminergic agent, produces locomotor stimu-
lation and stereotypy in rats. Neuroleptic agents, as
well as atypical antipsychotic drugs,2,3 decrease
amphetamine-induced hyperactivity.

All antipsychotic drugs are screened in animals on
these tests.

Until recently, it was thought that both cataleptic po-
tential and blocking of a conditioned avoidance reaction
in animals was necessary for predicting antipsychotic
action in humans. The finding that atypical antipsy-
chotic agents such as clozapine, remoxipride, thiori-
dazine and olanzapine block conditioned avoidance in
much smaller doses than those required to produce
catalepsy3–5 helped to clarify the meaning of the animal

pharmacologic tests. Clinically, these drugs have been
proven to be effective for treating psychosis, and they
produce fewer EPS in patients than neuroleptic agents
(i.e, typical antipsychotics). In nonhuman primates, the
effective antipsychotic agents such as clozapine and
sertindole do not produce dystonia.6 Thus, catalepsy in
animal pharmacologic tests predicts EPS, and blockade
of conditioned avoidance predicts antipsychotic poten-
tial in humans.

The observation that injections of both typical and
atypical antipsychotic agents into the nucleus accum-
bens (NAC) antagonizes amphetamine-induced loco-
motor activity suggests that this nucleus may be the
site of antipsychotic action. Metoclopramide, a benza-
mide derivative, even in doses that produce catalepsy,
cannot block this effect.7 This is not a potent antipsy-
chotic drug, but it can induce EPS. Generally, atypical
antipsychotic drugs can be distinguished by a greater
degree of separation of dose–response curves for anti-
psychotic efficacy and EPS liability than typical anti-
psychotic drugs.8–10

Recently, other animal pharmacologic tests such as
prepulse inhibition and paw tests have been intro-
duced.11 Hopefully, in future, animal models will help
to predict not only antipsychotic action and EPS poten-
tial but also effectiveness on cognitive, negative and
mood measures. The neuroleptic agents and the atypi-
cal antipsychotic drugs may lie on the same continuum
for EPS liability, but animal models indicate that
parkinsonian symptoms are not necessary for antipsy-
chotic action and have provided a framework for de-
veloping antipsychotic drugs with no EPS.

Antipsychotic action on specific brain sites

Proto-oncogenes, each of which serves a specific func-
tion, are normal cellular genes that cause cellular trans-
formation. They are also called immediate early genes
(IEGs) because in response to neurotransmitters and
drugs, their transcription is transiently activated in
neurons within minutes without new protein synthe-
sis. These cellular IEGs include members of the related
fos and jun families and zif/268. The fos family of genes
has a prefix c in animals and v in viruses. The protein
produced, Fos, is present in very small quantities in
many neuronal cells under resting conditions. In re-
sponse to a stimulus, c-fos mRNA is produced and
translocated into the cytoplasm where it is translated
into Fos protein. Fos protein is then translocated back
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to the nucleus where, in conjunction with a member of
the Jun family, it binds to the activator protein-1 (AP-1)
site on the promoter regions of the numerous target
genes and regulates their expression. Diverse external
stimuli can activate the IEGs by stimulating the pro-
duction of a calmodulin-dependent protein kinase.

The proto-oncogene c-fos is a useful marker to map
changes in neuronal activity.12,13 The ability of various
neurotransmitters to increase c-fos expression in the
central nervous system suggests that c-fos induction
can occur as a consequence of synaptic activation. Fos
binding to DNA changes the response of an organism
for as long as a drug is given, but does not perma-
nently change the gene. This phenomenon is called a
phenocopy, in contrast to phenotype.

Neuroleptics and atypical antipsychotic drugs in-
duce c-fos in various areas of the brain.14–16 This differ-
ential distribution is useful in identifying the brain
regions that are targets for these drugs. Antipsychotic
drugs have been reported to increase c-fos expression
in the striatum, NAC, medial prefrontal cortex (PFC)
and lateral septal nucleus. Recently, attention has
focused on the thalamic region as well.

Striatum

The striatum is divided into the dorsolateral region,
which includes caudate and putamen, and the ventro-
medial region, which interacts with sensorimotor and
limbic association cortices. Haloperidol14 and raclo-
pride17 induce Fos in the striatum. This effect is consid-
ered to be due to a blocking of DA receptors on strio-
pallidal neurons.15,18,19 A number of additional findings
support the possibility that Fos production is the direct
result of D2 blockade; in particular:
• coadministration of a D2 receptor agonist prevents

the induction of c-fos by haloperidol in the striatum;15

• dopaminergic agents such as cocaine and d-amphet-
amine decrease neuroleptic-induced striatal c-fos
expression;18,20

• a close topographical relationship exists between
neuronal Fos protein and D2 receptor distribution; 

• 6-hydroxydopamine (6-OHDA) lesions of the mes-
encephalic DA system block haloperidol-induced
c-fos expression in the striatum and haloperidol- and
clozapine-induced c-fos expression in the NAC.17

These results suggest that haloperidol increases the
number of fos-positive neurons in the striatum by
means of its D2 receptor blocking ability.

Although evidence suggests that increased Fos pro-
duction in dorsal striatum correlates with EPS, a recent
study21 indicates that these findings may be applicable
to short-term treatment only; Fos in the striatum was
found to be downregulated by long-term treatment
with clozapine and haloperidol. Haloperidol, but not
clozapine, led to markedly enhanced Fos-B-like protein
levels in the caudate putamen in rats. Thus, acute EPS
may be related to Fos in the striatum, but long-term
EPS may be related to Fos-B in caudate putamen.
Whether tardive dyskinesia, a long-term EPS, is related
to changes in caudate putamen is unknown.

An increase in striatal c-fos expression associated with
the administration of antipsychotic agents in animals is
predictive of EPS in humans, and low or no c-fos pro-
duction in the striatum may be related to a low poten-
tial for producing EPS.22 The antimuscarinic agent,
scopolamine, attenuates haloperidol-induced c-fos ex-
pression in the striatum. This suggests that the antimus-
carinic action of clozapine may be responsible for its
failure to induce c-fos in the striatum.23 However, be-
cause many other atypical antipsychotic agents that
lack antimuscarinic action also fail to induce c-fos in the
striatum, the antimuscarinic action of clozapine must
not be the sole cause.

Enkephalin in the striatum

Enkephalin may be involved in regulating c-fos in the
striatum and thereby affecting EPS. Haloperidol admin-
istration increases enkephalin mRNA in the striatal
neurons,24 whereas clozapine causes a small increase.
Moreover, after antipsychotic drug administration, c-fos
expression and enkephalin increases occur in the same
cells,14 suggesting that c-fos may be located in enkepha-
linergic neurons and that enkephalin may be a target
for fos expression.

Nucleus accumbens

The NAC has 2 divisions: the shell and the core. The
shell is allied with limbic circuits and the core, with the
extrapyramidal system. All neuroleptic drugs increase
c-fos in both the shell and the core of this nucleus.14,15

Atypical antipsychotic drugs, however, increase c-fos in
the shell but not in the core. Wan et al25 compared the
effects of the intraperitoneal administration of
haloperidol, chlorpromazine, thioridazine, clozapine,
raclopride, risperidone and ritanserin on Fos expres-



sion in the rat brain. Ritanserin did not increase Fos in
any region, indicating 5-HT2 serotonin receptor antago-
nism alone is not responsible for the observed effects of
antipsychotic drugs. The single shared effect of all the
antipsychotic preparations was the increased Fos-like
immunoreactivity in the NAC. Metoclopramide, a
drug that produces EPS without antipsychotic effects,
induces Fos in the core but not in the shell, suggesting
that Fos expression in the shell of the NAC may be re-
lated to clinical improvement of positive symptoms of
schizophrenia.

All antipsychotic agents that have been tested act on
the shell of the NAC and improve positive symptoms,
but only the atypical antipsychotic agents act on nega-
tive symptoms. Accordingly, c-fos expression in the
shell of the NAC is probably not associated with im-
provement of negative symptoms.

Neurotensin

Perikaryal neurotensin immunoreactivity is largely
absent in the rat striatum except after striatal DA deple-
tion or D2 receptor blockade. After D2 receptor blockade,
neurotensin immunoreactivity occurs in 2 subpopula-
tions of striatal neurons.26 One subpopulation, located
mainly in the rostral, dorsomedial and ventromedial
aspects of striatum, comprises moderate-to-large sized
cells. These exhibit intense neurotensin immunoreactiv-
ity but rarely display Fos immunoreactivity.27,28 A second
subpopulation, predominantly in the patch and matrix
compartments in the lower quadrant of the striatum, is
prominent after reserpine administration and shows
very light neurotensin immunoreactivity.28

Haloperidol, chlorpromazine, pimozide and trifluo-
perazine29 induce Fos that is frequently colocalized with
neurotensin in the dorsolateral striatum30 and the
NAC.31,32 In contrast, clozapine has been found to in-
crease neurotensin concentrations in the NAC only.33–35

With long-term treatment, haloperidol, but not cloza-
pine, increases neurotensin in the globus pallidus.36 With
sertindole, the effect in the NAC is dose dependent, and
at higher doses, selectivity is lost.37 Intraventricular injec-
tions of neurotensin antagonize apomorphine-induced
locomotor activity but not stereotypy in rats38 and selec-
tively increase the number of spontaneously active neu-
rons in A10 but not A9 areas,39 both of which are indica-
tive of its antipsychotic activity without significant EPS.

Neuronal Fos-like immunoreactivity and neu-
rotensin/neuromedin N mRNA are expressed in the

same population of striatal neurons after a single injec-
tion of haloperidol.40 This finding represents an essen-
tial anatomical link between c-fos and neurotensin. Fos-
like immunoreactivity was seen in neurons within 2
hours, and increases in neurotensin were noted 7 hours
after a haloperidol injection.14,41 This suggests that Fos
may be necessary for the induction of the neuromedin
gene. Injection of an antisense oligonucleotide to c-fos
blocks the haloperidol-induced increase in Fos and
subsequent mRNA for neurotensin.30 Thus, Fos appears
to be a second messenger in the induction of endoge-
nous neuropeptides. The practical therapeutic use of
neurotensin in psychosis should therefore be explored.

Medial prefrontal cortex 

The prelimbic, dorsal and anterior cingulate, and
medial precentral cortices collectively make up the
PFC.42 These areas receive afferents from A10 DA neu-
rons in the ventral tegmentum of the midbrain.43 The
infralimbic region also receives the same afferents as
well those from the thalamic paraventricular nucleus.44

Stimulation of the dorsomedial thalamic nucleus in-
creases the firing rate of PFC pyramidal cells.45,46 These
medial thalamic projections to the frontal cortex are
glutamatergic.46,47

Unlike haloperidol, clozapine increases Fos-positive
neurons in the PFC. The Fos is selectively restricted to
the pyramidal cells in the deeper layers of the ventral
aspects of the rat PFC, including infralimbic and pre-
limbic cortex, but not the medial central cortex. Other
atypical antipsychotic drugs (but not neuroleptics and
remoxipride) also increase Fos in the PFC.48 Guo et al49

used brain lesion, pharmacologic and immunohisto-
chemical techniques to explore the receptor mecha-
nisms by which clozapine increases c-fos expression in
the PFC. Reduction of the serotonin, norepinephrine or
DA content by selective lesions in the brain did not
decrease clozapine-induced c-fos expression in the rat
PFC, suggesting it is unlikely that these mechanisms
are involved in the clozapine-induced changes in c-fos
expression in the PFC.17,49 An alternate explanation for
this action has been put forward — that c-fos expres-
sion in the PFC is the drug-induced downstream effect
of GABA afferents from the paraventricular nucleus of
the thalamus to the PFC. Clozapine may exert its action
on the PFC indirectly through afferent input from the
medial thalamus, hippocampus, entorhinal cortex and
basolateral amygdala.
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The most likely site of action of atypical antipsy-
chotic drugs on negative symptoms of schizophrenia is
the PFC.17 This is based on the fact that atypical an-
tipsychotic drugs that improve negative symptoms in-
crease c-fos expression in the PFC in animal pharmaco-
logic tests. However, the effectiveness of atypical drugs
on primary negative symptoms has not been conclu-
sively proven. A number of interpretations are possible
in this regard — that c-fos expression in the PFC is:
• coincidental only, and it is the absence of EPS with

atypical drug administration that is responsible for
the apparent improvement of negative symptoms;

• an indirect effect of drug action elsewhere;
• directly correlated with improvement of negative

symptoms. This assumption is supported by the
findings that medial sulcal atrophy in the PFC de-
creases the effectiveness of clozapine on negative
symptoms. Neuropsychologic testing and neuro-
imaging findings also point to a frontal lobe de-
fect.50,51 Patients with schizophrenia have a defect in
smooth eye tracking which is associated with the
medial PFC. Because clozapine acts on the PFC and
not on the medial PFC, it does not alleviate the de-
fect in smooth eye tracking.

Lateral septal nucleus

Clozapine greatly increases the number of Fos im-
munoreactive neurons in the lateral septal nucleus as
well.52 Haloperidol and not raclopride produced a
modest increase in c-fos expression in the lateral septal
nucleus, indicating that fos production may not be re-
lated to D2 receptor blockade. Apart from risperidone,
all of the antipsychotic drugs tested to date elevate Fos-
like immunoreactivity in the lateral septal nucleus,
suggesting that this limbic structure is important for
antipsychotic activity.52 In contrast to the PFC, the lat-
eral septum contains abundant 5-HT1A receptors and
very few 5-HT2 receptors.53 Neither clozapine nor
haloperidol appear to block 5-HT1A. Therefore, the in-
crease of Fos in the septal area may be due to mecha-
nisms unrelated to 5-HT and DA.

Thalamic paraventricular nucleus

The paraventricular nucleus of the thalamus is in a piv-
otal location between the reticular formation and fore-
brain DA system and may serve an important role in
the pathophysiology of schizophrenia. Clozapine

administration increases Fos in the thalamic paraven-
tricular nucleus, which provides glutamatergic projec-
tions to the PFC and the NAC; these projections may
be associated with the observed c-fos induction in the
PFC.17,54 Comparable doses of raclopride, sulpiride, re-
moxapride and haloperidol did not induce Fos in this
region, whereas loxapine and very high doses of
haloperidol induced a modest increase. Also, a D1 an-
tagonist did not induce Fos or alter clozapine-induced
Fos.54 There is electrophysiological evidence that ion-
tophoretically applied clozapine, but not haloperidol,
can reduce the inhibitory actions of a 5-HT receptor
agonist on pyramidal cells in the PFC.55

General pattern of c-fos distribution

Haloperidol administration induces c-fos expression in
the NAC, lateral septal nucleus and striatum, and
clozapine increases c-fos-positive neurons in the all the
above-mentioned areas as well as the medial PFC.16,17,56,57

This suggests that the typical and atypical antipsy-
chotic drugs evoke different patterns of neuronal activ-
ity and that the different clinical profiles of drugs may
be related to the regionally different effects. D2 receptor
antagonism is not sufficient to explain the unique pat-
tern produced by clozapine because it is common for
both drug groups.58 The exact receptor mechanisms un-
derlying antipsychotic drug-induced c-fos expression in
the medial PFC and other regions remain unknown.

DA receptors

Although the relation between D2 receptor blocking
and antipsychotic potential is well established, the rela-
tion is not linear. In vitro studies provide some support
for the finding that blocking over 80% of the receptors
produces EPS and thus affects relative antipsychotic ef-
ficiency.59 Conversely, D2 receptor occupancy of less
than 80% produces atypical features, including low
EPS.60 In a single-photon emission tomography (SPET)
study employing a D2 receptor ligand in EPS-free pa-
tients,61 olanzapine displayed a level of binding in the
brain between that of haloperidol and clozapine. In
striatal D2 receptor binding, olanzapine was similar to
clozapine.61 These results argue that moderate D2 recep-
tor antagonism is associated with fewer EPS. The
looseness of attachment of an antipsychotic drug to the
D2 receptor seems to differentiate typical and atypical
drugs.62–64 Typical drugs are firmly attached and atypi-



cal drugs are loosely attached to D2 receptors, and thus,
the latter do not induce EPS.

The actions of antipsychotic drugs on D1, D3 and D4

receptors have also been explored. D3 receptors are ex-
pressed mainly in the olfactory tubercle, NAC, island of
Calleja and hypothalamus.65–67 D4

68 receptors have a
unique distribution, with the highest levels in the PFC,
and D3 receptors are distributed in the NAC, major
island of Calleja and lateral septal nucleus. Quinpirole,
which has approximately equal antagonist affinities for
D3 and D4 receptors, induced a significant decrease in
clozapine-induced c-fos expression in PFC, NAC, major
island of Calleja and lateral septal nucleus. In contrast,
the more selective D3 receptor agonist 7-OH-DPAT69,70

significantly reduced clozapine-induced increases in c-
fos expression (Fos protein levels) in the major island of
Calleja, NAC and lateral septal nucleus, with no effect
on the Fos level in the PFC. These data suggest that the
action on D3 receptors may mediate the c-fos effects in
the NAC, major island of Calleja and lateral septal
nucleus, whereas D4 receptors may be responsible for
the action in PFC. 

Based on the selective antagonism of clozapine at D4

compared with D2 receptors, expectations that D4 recep-
tor blockers would improve schizophrenia ran high.71

Roth et al72 assessed the affinities of 13 atypical and 12
typical antipsychotic drugs on D4 receptors and exam-
ined D4/D2 ratios. Many atypical drugs (e.g., melper-
one, quetiapine, fluperlapine) had very little D4 recep-
tor blocking activity, and many typical (e.g., loxapine,
chlorpromazine, fluphenazine, mesoridazine, thiori-
dazine, trifluoperazine) and some atypical drugs (i.e.,
olanzapine, clozapine, risperidone, zotepine, tio-
spirone) drugs had high D4 affinities. Interestingly, the
ratios of D2/D4 did not differentiate the typical and
atypical agents but 5-HT2A/D2 ratios did. Moreover, a
selective D4 receptor antagonist, L-745,870, was found
to be ineffective in the treatment of schizophrenia in a
placebo-controlled study.73

The role of D1 receptors in the pathophysiology of
schizophrenia is also unclear. Repeated administration
of cocaine and amphetamine produces long-term
behavioural changes as well as addiction. Cocaine
enhances extracellular DA by blocking reuptake, and
amphetamine does the same by increasing DA release.
The effects of psychomotor stimulants occur in striatal
neurons that selectively express the D1 receptor sub-
type.74–77 Amphetamine or cocaine administration in the
D1-receptor-deficient mouse77 does not induce Fos-like

activity, and pure D1 receptor antagonists have been re-
ported to produce catalepsy in rats78,79 and dystonia in
monkeys primed with typical neuroleptics.80 These
findings suggest that D1 receptors may have a role in
producing EPS or that D2 receptors may act through D1

receptors to produce EPS.

Serotonin receptors

Atypical antipsychotics block serotonin 5-HT2 recep-
tors.58,81–83 When the ratio of 5-HT2 to D2 receptor block-
ing is greater than 1, atypical antipsychotic action such
as therapeutic effects on negative symptoms and few
EPS are noted. Although 5-HT2

84 receptor blockade and
atypical profile correlate, the exact mechanisms by
which 5-HT2 blocking improves negative symptoms
and induces fewer EPS are unclear. It will be recalled
that positive symptoms are associated with a hyper-
dopaminergic state in the limbic lobe, which is rich in
dopaminergic innervation. Serotonin inhibits DA re-
lease, and in the limbic lobe, with high 5-HT2 and low
D2 receptor density, D2 receptor blocking action pre-
vails and positive symptoms are controlled. Negative
symptoms, on the other hand, are associated with a hy-
podopaminergic state in the frontal lobe, which is rich
in serotonergic innervation. Here, with the rich distrib-
ution of 5-HT2 and sparse distribution of D2 receptors,85

serotonin inhibits DA release and the hypodopaminer-
gic state of the frontal lobe becomes normal, thereby
improving negative symptoms. Thus, the differential
distribution of D2 and 5-HT2 receptors explains why
atypical antipsychotic drugs exert opposite action on
DA transmission in the frontal and limbic lobes.

Given that α1 adrenergic86,87 and α2 adrenergic88 recep-
tor blockade has also been proposed to be involved in
the mechanism of action of the new antipsychotics,
“multireceptor” action may actually explain the unique
clinical profile of atypical antipsychotic agents
(Table 1). Clozapine, which acts on many different
receptor types, has been proven to be the clinically
most effective drug with the least EPS. Olanzapine also
exhibits multireceptor action, whereas risperidone and
sertindole have predominantly D2 and 5-HT2 receptor
blocking effects. Any subtle differences in the action of
the 2 groups of drugs remain to be elucidated.

Electrophysiological activity

Individual DA cells show both tonic and phasic activity.
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Spikes that represent the firing of the single neuron
form the background noise or tonic activity against
which bursts of 5–20 spikes/s form the signals or pha-
sic activity. When phencyclidine, which mimics schizo-
phrenia, is injected into an animal, DA neurons in the
ventral tegmental area show increased tonic activity
and decreased phasic burst activity. This suggests that
the positive symptoms of schizophrenia may be due to
increased tonic activity, bringing a low signal-to-noise
ratio. Atypical antipsychotic drugs act on dorsal and
ventral tegmental areas differently; they downregulate
the firing rates in the ventral but not the dorsal
tegmental area, and this has 2 important effects: the hy-
perdopaminergic state in the limbic area is normalized,
and the extrapyramidal system is not affected (i.e., no
EPS). Typical antipsychotics increase the actively firing
cells in both A9 and A10, whereas atypical antipsy-
chotics affect the A10 areas only.89 Long-term adminis-
tration of typical antipsychotic drugs decreases the fir-
ing of both A9 and A10 areas due to depolarization
block. Atypical drugs quetiapine,90 olanzapine,4 sertin-
dole91 induce depolarization block in A10 only, and thus,
the antipsychotic effect is produced without EPS.92,93

Conclusions

With knowledge of the intracellular and genetic action
of antipsychotic drugs, the site of action of these drugs
is better understood. Evidence suggests that D2 recep-
tors are related to improvement in positive symptoms,
and such an action may reside in the shell region of the
NAC. Similarly, data indicate that the medial PFC may
mediate antipsychotic effects on negative symptoms.
However, other possibilities should also be enter-
tained; other regions may be involved as well, and
these effects may be mediated by some not-yet-defined

afferents. The brain regions associated with cognitive
symptoms remain to be delineated.

Although c-fos genes provide some structural basis for
the symptoms of schizophrenia, the action on the recep-
tors are not clear. D2, D3 or D4 receptors, or all of them in
combination, may be involved in the alleviation of posi-
tive symptoms, and negative symptoms may be due to a
hypodopaminergic state in the frontal lobe; 5-HT recep-
tors may play a role in this regard. On the other hand, it
is likely that the selective action of the new drugs on the
ventral and not dorsal tegmental nucleus and the effect
on the paraventricular nucleus of thalamus may also
play a part in improving negative symptoms.

Robertson and colleagues52 proposed a new defini-
tion of atypicality. They suggest that if the number of
Fos-positive cells in the NAC is greater than the num-
ber of Fos-positive cells in the striatum, the drug
should be considered atypical. This index allows atypi-
cality to be quantified, but its usefulness requires fur-
ther validation. In addition, the concept that the ability
of the drug to bind to D2 receptors in a reversible and
surmountable fashion may also contribute to atypical-
ity should be studied further.94
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